TCP的段格式如下图所示(该图出自[TCPIP])。
和UDP协议一样也有源端口号和目的端口号,通讯的双方由IP地址和端口号标识。32位序号、32位确认序号、窗口大小稍后详细解释。4位首部长度和IP协议头类似,表示TCP协议头的长度,以4字节为单位,因此TCP协议头最长可以是4x15=60字节,如果没有选项字段,TCP协议头最短20字节。URG、ACK、PSH、RST、SYN、FIN是六个控制位,本节稍后将解释SYN、ACK、FIN、RST四个位,其它位的解释从略。16位检验和将TCP协议头和数据都计算在内。紧急指针和各种选项的解释从略。
下图是一次TCP通讯的时序图。
在这个例子中,首先客户端主动发起连接、发送请求,然后服务器端响应请求,然后客户端主动关闭连接。两条竖线表示通讯的两端,从上到下表示时间的先后顺序,注意,数据从一端传到网络的另一端也需要时间,所以图中的箭头都是斜的。双方发送的段按时间顺序编号为1-10,各段中的主要信息在箭头上标出,例如段2的箭头上标着SYN, 8000(0), ACK 1001, <mss 1024>,表示该段中的SYN位置1,32位序号是8000,该段不携带有效载荷(数据字节数为0),ACK位置1,32位确认序号是1001,带有一个mss选项值为1024。
建立连接的过程:
客户端发出段1,SYN位表示连接请求。序号是1000,这个序号在网络通讯中用作临时的地址,每发一个数据字节,这个序号要加1,这样在接收端可以根据序号排出数据包的正确顺序,也可以发现丢包的情况,另外,规定SYN位和FIN位也要占一个序号,这次虽然没发数据,但是由于发了SYN位,因此下次再发送应该用序号1001。mss表示最大段尺寸,如果一个段太大,封装成帧后超过了链路层的最大帧长度,就必须在IP层分片,为了避免这种情况,客户端声明自己的最大段尺寸,建议服务器端发来的段不要超过这个长度。
服务器发出段2,也带有SYN位,同时置ACK位表示确认,确认序号是1001,表示“我接收到序号1000及其以前所有的段,请你下次发送序号为1001的段”,也就是应答了客户端的连接请求,同时也给客户端发出一个连接请求,同时声明最大尺寸为1024。
客户端发出段3,对服务器的连接请求进行应答,确认序号是8001。
在这个过程中,客户端和服务器分别给对方发了连接请求,也应答了对方的连接请求,其中服务器的请求和应答在一个段中发出,因此一共有三个段用于建立连接,称为'''三方握手(three-way-handshake)'''。在建立连接的同时,双方协商了一些信息,例如双方发送序号的初始值、最大段尺寸等。
在TCP通讯中,如果一方收到另一方发来的段,读出其中的目的端口号,发现本机并没有任何进程使用这个端口,就会应答一个包含RST位的段给另一方。例如,服务器并没有任何进程使用8080端口,我们却用telnet客户端去连接它,服务器收到客户端发来的SYN段就会应答一个RST段,客户端的telnet程序收到RST段后报告错误Connection refused:
$ telnet 192.168.0.200 8080 Trying 192.168.0.200... telnet: Unable to connect to remote host: Connection refused
数据传输的过程:
客户端发出段4,包含从序号1001开始的20个字节数据。
服务器发出段5,确认序号为1021,对序号为1001-1020的数据表示确认收到,同时请求发送序号1021开始的数据,服务器在应答的同时也向客户端发送从序号8001开始的10个字节数据,这称为piggyback。
客户端发出段6,对服务器发来的序号为8001-8010的数据表示确认收到,请求发送序号8011开始的数据。
在数据传输过程中,ACK和确认序号是非常重要的,应用程序交给TCP协议发送的数据会暂存在TCP层的发送缓冲区中,发出数据包给对方之后,只有收到对方应答的ACK段才知道该数据包确实发到了对方,可以从发送缓冲区中释放掉了,如果因为网络故障丢失了数据包或者丢失了对方发回的ACK段,经过等待超时后TCP协议自动将发送缓冲区中的数据包重发。
这个例子只描述了最简单的一问一答的情景,实际的TCP数据传输过程可以收发很多数据段,虽然典型的情景是客户端主动请求服务器被动应答,但也不是必须如此,事实上TCP协议为应用层提供了全双工(full-duplex)的服务,双方都可以主动甚至同时给对方发送数据。
如果通讯过程只能采用一问一答的方式,收和发两个方向不能同时传输,在同一时间只允许一个方向的数据传输,则称为'''半双工(half-duplex)''',假设某种面向连接的协议是半双工的,则只需要一套序号就够了,不需要通讯双方各自维护一套序号,想一想为什么。
关闭连接的过程:
客户端发出段7,FIN位表示关闭连接的请求。
服务器发出段8,应答客户端的关闭连接请求。
服务器发出段9,其中也包含FIN位,向客户端发送关闭连接请求。
客户端发出段10,应答服务器的关闭连接请求。
建立连接的过程是三方握手,而关闭连接通常需要4个段,服务器的应答和关闭连接请求通常不合并在一个段中,因为有连接半关闭的情况,这种情况下客户端关闭连接之后就不能再发送数据给服务器了,但是服务器还可以发送数据给客户端,直到服务器也关闭连接为止,稍后会看到这样的例子。
介绍UDP时我们描述了这样的问题:如果发送端发送的速度较快,接收端接收到数据后处理的速度较慢,而接收缓冲区的大小是固定的,就会丢失数据。TCP协议通过'''滑动窗口(Sliding Window)'''机制解决这一问题。看下图的通讯过程。
发送端发起连接,声明最大段尺寸是1460,初始序号是0,窗口大小是4K,表示“我的接收缓冲区还有4K字节空闲,你发的数据不要超过4K”。接收端应答连接请求,声明最大段尺寸是1024,初始序号是8000,窗口大小是6K。发送端应答,三方握手结束。
发送端发出段4-9,每个段带1K的数据,发送端根据窗口大小知道接收端的缓冲区满了,因此停止发送数据。
接收端的应用程序提走2K数据,接收缓冲区又有了2K空闲,接收端发出段10,在应答已收到6K数据的同时声明窗口大小为2K。
接收端的应用程序又提走2K数据,接收缓冲区有4K空闲,接收端发出段11,重新声明窗口大小为4K。
发送端发出段12-13,每个段带2K数据,段13同时还包含FIN位。
接收端应答接收到的2K数据(6145-8192),再加上FIN位占一个序号8193,因此应答序号是8194,连接处于半关闭状态,接收端同时声明窗口大小为2K。
接收端的应用程序提走2K数据,接收端重新声明窗口大小为4K。
接收端的应用程序提走剩下的2K数据,接收缓冲区全空,接收端重新声明窗口大小为6K。
接收端的应用程序在提走全部数据后,决定关闭连接,发出段17包含FIN位,发送端应答,连接完全关闭。
上图在接收端用小方块表示1K数据,实心的小方块表示已接收到的数据,虚线框表示接收缓冲区,因此套在虚线框中的空心小方块表示窗口大小,从图中可以看出,随着应用程序提走数据,虚线框是向右滑动的,因此称为滑动窗口。
从这个例子还可以看出,发送端是一K一K地发送数据,而接收端的应用程序可以两K两K地提走数据,当然也有可能一次提走3K或6K数据,或者一次只提走几个字节的数据,也就是说,应用程序所看到的数据是一个整体,或说是一个流(stream),在底层通讯中这些数据可能被拆成很多数据包来发送,但是一个数据包有多少字节对应用程序是不可见的,因此TCP协议是面向流的协议。而UDP是面向消息的协议,每个UDP段都是一条消息,应用程序必须以消息为单位提取数据,不能一次提取任意字节的数据,这一点和TCP是很不同的。